OrdisArchwingtrailer
“I want more... Operator, please hurry! This story is getting quite good!”
This article is a stub. You can help WARFRAME Wiki by adding a sentence or two.

Saxum are bipedal, medium-sized assailants capable of short-ranged attacks and a powerful grand slam in melee.

The Deimos Saxum is a large bipedal Infestation w Infested enemy that resides in the Cambion Drift, Deimos.

Behavior[]

In addition to releasing projectiles from its shoulders that deal lingering area of effect, the Saxum can do powerful slams using its enlarged "belly".

The Saxum is immune to Status Effects until both its shoulders, called Femurs, are destroyed. This also removes its ability to launch controlled projectiles, forcing it to rely on melee attacks. However, doing so will cause its broken shoulders to endlessly spew DmgCorrosiveSmall64 Corrosive bomblets that travel up to 15 meters from it until it dies. It will also take heavy damage over time in this state, effectively bleeding out. Given its extensive toughness otherwise, destroying its shoulder Femurs is in fact the easiest way to kill a Saxum.

After not taking damage for 10 seconds, the Saxum will start to regenerate 2% of max health per second.

Has immunity to DmgViralSmall64 Viral status.

The Deimos Saxum has no "head" hitbox.

The Deimos Saxum Rex releases Deimos Tendril Drones from its shoulders, in addition of shooting projectiles.

Damage Reduction[]

Deimos Saxum possess Damage Reduction that scales depending on your weapon's DPS excluding critical hits. DPS is calculated by

( modded damage ) ( modded fire rate ) ( modded multishot ) ( body part multipliers ) {\displaystyle (\text{modded damage})\cdot(\text{modded fire rate})\cdot(\text{modded multishot})\cdot(\text{body part multipliers})} {\displaystyle ({\text{modded damage}})\cdot ({\text{modded fire rate}})\cdot ({\text{modded multishot}})\cdot ({\text{body part multipliers}})}

Critical Hits are applied after the damage resistance is calculated. Additionally, the average DPS is calculated using all health/shield modifiers, other sources of damage reduction, and is quantized.

Damage Multiplier = { 1 , DPS A v e r a g e 1000 0.8 + 200 DPS A v e r a g e , 1000 < DPS A v e r a g e 2500 0.7 + 450 DPS A v e r a g e , 2500 < Average DPS 5000 0.4 + 1950 DPS A v e r a g e , 5000 < Average DPS 10000 0.2 + 3950 DPS A v e r a g e , 10000 < Average DPS 20000 0.1 + 5950 DPS A v e r a g e , 20000 < DPS A v e r a g e {\displaystyle { \text{Damage Multiplier} = \begin{cases} 1,\; & \text{DPS}_{Average} \leq 1000 \\ 0.8 + \frac{200}{\text{DPS}_{Average}},\; & 1000 < \text{DPS}_{Average} \leq 2500 \\ 0.7 + \frac{450}{\text{DPS}_{Average}},\; & 2500 < \text{Average DPS} \leq 5000 \\ 0.4 + \frac{1950}{\text{DPS}_{Average}},\; & 5000 < \text{Average DPS} \leq 10000 \\ 0.2 + \frac{3950}{\text{DPS}_{Average}},\; & 10000 < \text{Average DPS} \leq 20000 \\ 0.1 + \frac{5950}{\text{DPS}_{Average}},\; & 20000 < \text{DPS}_{Average} \end{cases} }} {\displaystyle {{\text{Damage Multiplier}}={\begin{cases}1,\;&{\text{DPS}}_{Average}\leq 1000\\0.8+{\frac {200}{{\text{DPS}}_{Average}}},\;&1000<{\text{DPS}}_{Average}\leq 2500\\0.7+{\frac {450}{{\text{DPS}}_{Average}}},\;&2500<{\text{Average DPS}}\leq 5000\\0.4+{\frac {1950}{{\text{DPS}}_{Average}}},\;&5000<{\text{Average DPS}}\leq 10000\\0.2+{\frac {3950}{{\text{DPS}}_{Average}}},\;&10000<{\text{Average DPS}}\leq 20000\\0.1+{\frac {5950}{{\text{DPS}}_{Average}}},\;&20000<{\text{DPS}}_{Average}\end{cases}}}}

Until both Femurs are destroyed, the main body possesses an additional 80% damage resistance. After destroying a Femur, the other one will take 2x damage. After destroying the other, both locations will take 2x damage.

For proc damage, critical hits are taken into account.

DPS P r o c = ( proc damage ) ( critical multiplier if triggered ) ( modded fire rate ) ( modded multishot ) {\displaystyle \textbf{DPS}_{Proc} = (\text{proc damage}) \cdot (\text{critical multiplier if triggered}) \cdot (\text{modded fire rate}) \cdot (\text{modded multishot}) } {\displaystyle {\textbf {DPS}}_{Proc}=({\text{proc damage}})\cdot ({\text{critical multiplier if triggered}})\cdot ({\text{modded fire rate}})\cdot ({\text{modded multishot}})}

Where the proc damage is the per tick damage of the corresponding proc, with health/shield/armor modifiers taken into account. Note that unlike the DPS controller for normal damage, the one for proc damage takes critical hits into account. For heat procs, the proc damage in the above formula is the accumulated value of all the previous heat procs.

Damage Multiplier = { 1 , DPS A v e r a g e 1000 0.8 + 200 DPS P r o c , 1000 < DPS A v e r a g e 2500 0.7 + 450 DPS P r o c , 2500 < Average DPS 5000 0.4 + 1950 DPS P r o c , 5000 < Average DPS 10000 0.2 + 3950 DPS P r o c , 10000 < Average DPS 20000 0.1 + 5950 DPS P r o c , 20000 < DPS A v e r a g e {\displaystyle { \text{Damage Multiplier} = \begin{cases} 1,\; & \text{DPS}_{Average} \leq 1000 \\ 0.8 + \frac{200}{\text{DPS}_{Proc}},\; & 1000 < \text{DPS}_{Average} \leq 2500 \\ 0.7 + \frac{450}{\text{DPS}_{Proc}},\; & 2500 < \text{Average DPS} \leq 5000 \\ 0.4 + \frac{1950}{\text{DPS}_{Proc}},\; & 5000 < \text{Average DPS} \leq 10000 \\ 0.2 + \frac{3950}{\text{DPS}_{Proc}},\; & 10000 < \text{Average DPS} \leq 20000 \\ 0.1 + \frac{5950}{\text{DPS}_{Proc}},\; & 20000 < \text{DPS}_{Average} \end{cases} }} {\displaystyle {{\text{Damage Multiplier}}={\begin{cases}1,\;&{\text{DPS}}_{Average}\leq 1000\\0.8+{\frac {200}{{\text{DPS}}_{Proc}}},\;&1000<{\text{DPS}}_{Average}\leq 2500\\0.7+{\frac {450}{{\text{DPS}}_{Proc}}},\;&2500<{\text{Average DPS}}\leq 5000\\0.4+{\frac {1950}{{\text{DPS}}_{Proc}}},\;&5000<{\text{Average DPS}}\leq 10000\\0.2+{\frac {3950}{{\text{DPS}}_{Proc}}},\;&10000<{\text{Average DPS}}\leq 20000\\0.1+{\frac {5950}{{\text{DPS}}_{Proc}}},\;&20000<{\text{DPS}}_{Average}\end{cases}}}}

Variants[]

Trivia[]

Gallery[]

Patch History[]

Update 29.1 (2020-09-17)

Hotfix 29.0.7 (2020-09-03)

Update 29.0 (2020-08-25)