
Network Configuration

Proxmox VE is using the Linux network stack. This provides a lot of flexibility on how to set up the network on
the Proxmox VE nodes. The configuration can be done either via the GUI, or by manually editing the file
/etc/network/interfaces, which contains the whole network configuration. The interfaces(5)
manual page contains the complete format description. All Proxmox VE tools try hard to keep direct user
modifications, but using the GUI is still preferable, because it protects you from errors.

A Linux bridge interface (commonly called vmbrX) is needed to connect guests to the underlying physical
network. It can be thought of as a virtual switch which the guests and physical interfaces are connected to. This
section provides some examples on how the network can be set up to accomodate different use cases like
redundancy with a bond, vlans or routed and NAT setups.

The Software Defined Network is an option for more complex virtual networks in Proxmox VE clusters.

It’s discouraged to use the traditional Debian tools ifup and ifdown if unsure, as they have
some pitfalls like interupting all guest traffic on ifdown vmbrX but not reconnecting those
guest again when doing ifup on the same bridge later.

Proxmox VE does not write changes directly to /etc/network/interfaces. Instead, we write into a
temporary file called /etc/network/interfaces.new, this way you can do many related changes at
once. This also allows to ensure your changes are correct before applying, as a wrong network configuration
may render a node inaccessible.

With the recommended ifupdown2 package (default for new installations since Proxmox VE 7.0), it is possible
to apply network configuration changes without a reboot. If you change the network configuration via the GUI,
you can click the Apply Configuration button. This will move changes from the staging interfaces.new
file to /etc/network/interfaces and apply them live.

If you made manual changes directly to the /etc/network/interfaces file, you can apply them by
running ifreload -a

If you installed Proxmox VE on top of Debian, or upgraded to Proxmox VE 7.0 from an older
Proxmox VE installation, make sure ifupdown2 is installed: apt install ifupdown2

Apply Network Changes

Live-Reload Network with ifupdown2

Reboot Node to Apply

Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information OK

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 1/11

https://pve.proxmox.com/wiki/Software-Defined_Network#chapter_pvesdn
https://www.proxmox.com/en/privacy-policy

Another way to apply a new network configuration is to reboot the node. In that case the systemd service
pvenetcommit will activate the staging interfaces.new file before the networking service will
apply that configuration.

We currently use the following naming conventions for device names:

Ethernet devices: en*, systemd network interface names. This naming scheme is used for new
Proxmox VE installations since version 5.0.

Ethernet devices: eth[N], where 0 ≤ N (eth0, eth1, …) This naming scheme is used for
Proxmox VE hosts which were installed before the 5.0 release. When upgrading to 5.0, the names
are kept as-is.

Bridge names: Commonly vmbr[N], where 0 ≤ N ≤ 4094 (vmbr0 - vmbr4094), but you can use
any alphanumeric string that starts with a character and is at most 10 characters long.

Bonds: bond[N], where 0 ≤ N (bond0, bond1, …)

VLANs: Simply add the VLAN number to the device name, separated by a period (eno1.50,
bond1.30)

This makes it easier to debug networks problems, because the device name implies the device type.

Systemd defines a versioned naming scheme for network device names. The scheme uses the two-character
prefix en for Ethernet network devices. The next characters depends on the device driver, device location and
other attributes. Some possible patterns are:

o<index>[n<phys_port_name>|d<dev_port>] — devices on board

s<slot>[f<function>][n<phys_port_name>|d<dev_port>] — devices by hotplug id

[P<domain>]p<bus>s<slot>[f<function>][n<phys_port_name>|d<dev_port>] —
devices by bus id

x<MAC> — devices by MAC address

Naming Conventions

Systemd Network Interface Names

Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 2/11

https://www.proxmox.com/en/privacy-policy

Some examples for the most common patterns are:

eno1 — is the first on-board NIC

enp3s0f1 — is function 1 of the NIC on PCI bus 3, slot 0

For a full list of possible device name patterns, see the systemd.net-naming-scheme(7) manpage.

A new version of systemd may define a new version of the network device naming scheme, which it then uses
by default. Consequently, updating to a newer systemd version, for example during a major Proxmox VE
upgrade, can change the names of network devices and require adjusting the network configuration. To avoid
name changes due to a new version of the naming scheme, you can manually pin a particular naming scheme
version (see below).

However, even with a pinned naming scheme version, network device names can still change due to kernel or
driver updates. In order to avoid name changes for a particular network device altogether, you can manually
override its name using a link file (see below).

For more information on network interface names, see Predictable Network Interface Names.

You can pin a specific version of the naming scheme for network devices by adding the net.naming-
scheme=<version> parameter to the kernel command line. For a list of naming scheme versions, see the
systemd.net-naming-scheme(7) manpage.

For example, to pin the version v252, which is the latest naming scheme version for a fresh Proxmox VE 8.0
installation, add the following kernel command-line parameter:

net.naming-scheme=v252

See also this section on editing the kernel command line. You need to reboot for the changes to take effect.

You can manually assign a name to a particular network device using a custom systemd.link file. This overrides
the name that would be assigned according to the latest network device naming scheme. This way, you can
avoid naming changes due to kernel updates, driver updates or newer versions of the naming scheme.

Custom link files should be placed in /etc/systemd/network/ and named <n>-<id>.link, where n
is a priority smaller than 99 and id is some identifier. A link file has two sections: [Match] determines which
interfaces the file will apply to; [Link] determines how these interfaces should be configured, including their
naming.

To assign a name to a particular network device, you need a way to uniquely and permanently identify that
device in the [Match] section. One possibility is to match the device’s MAC address using the MACAddress
option, as it is unlikely to change.

Pinning a specific naming scheme version

Overriding network device names

Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 3/11

https://manpages.debian.org/stable/systemd/systemd.net-naming-scheme.7.en.html
https://systemd.io/PREDICTABLE_INTERFACE_NAMES/
https://pve.proxmox.com/wiki/Host_Bootloader#sysboot_edit_kernel_cmdline
https://manpages.debian.org/stable/systemd/systemd.net-naming-scheme.7.en.html
https://pve.proxmox.com/wiki/Host_Bootloader#sysboot_edit_kernel_cmdline
https://manpages.debian.org/stable/udev/systemd.link.5.en.html
https://www.proxmox.com/en/privacy-policy

The [Match] section should also contain a Type option to make sure it only matches the expected physical
interface, and not bridge/bond/VLAN interfaces with the same MAC address. In most setups, Type should be
set to ether to match only Ethernet devices, but some setups may require other choices. See the
systemd.link(5) manpage for more details.

Then, you can assign a name using the Name option in the [Link] section.

Link files are copied to the initramfs, so it is recommended to refresh the initramfs after adding,
modifying, or removing a link file:

update-initramfs -u -k all

For example, to assign the name enwan0 to the Ethernet device with MAC address aa:bb:cc:dd:ee:ff,
create a file /etc/systemd/network/10-enwan0.link with the following contents:

[Match]

MACAddress=aa:bb:cc:dd:ee:ff

Type=ether

[Link]

Name=enwan0

Do not forget to adjust /etc/network/interfaces to use the new name, and refresh your initramfs
as described above. You need to reboot the node for the change to take effect.

It is recommended to assign a name starting with en or eth so that Proxmox VE recognizes
the interface as a physical network device which can then be configured via the GUI. Also,
you should ensure that the name will not clash with other interface names in the future. One
possibility is to assign a name that does not match any name pattern that systemd uses for
network interfaces (see above), such as enwan0 in the example above.

For more information on link files, see the systemd.link(5) manpage.

Depending on your current network organization and your resources you can choose either a bridged, routed, or
masquerading networking setup.

The Bridged model makes the most sense in this case, and this is also the default mode on new Proxmox VE
installations. Each of your Guest system will have a virtual interface attached to the Proxmox VE bridge. This is
similar in effect to having the Guest network card directly connected to a new switch on your LAN, the
Proxmox VE host playing the role of the switch.

Choosing a network configuration

Proxmox VE server in a private LAN, using an external gateway to reach the
internet

Proxmox VE server at hosting provider, with public IP ranges for Guests
Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 4/11

https://manpages.debian.org/stable/udev/systemd.link.5.en.html
https://manpages.debian.org/stable/udev/systemd.link.5.en.html
https://www.proxmox.com/en/privacy-policy

Node: proxmox1 Node: proxmox2

eno1

Gateway, DHCP
192.168.10.1

Top of Rack Switch
1 2 3

eno1

vmbr0
192.168.10.2/24

tap100i0

eno1

vmbr0
192.168.10.3/24
tap200i0 tap201i0

ens18

VM 100
192.168.10.100

ens18

VM 200
192.168.10.200

ens18

VM 201
192.168.10.201

For this setup, you can use either a Bridged or Routed model, depending on what your provider allows.

In that case the only way to get outgoing network accesses for your guest systems is to use Masquerading. For
incoming network access to your guests, you will need to configure Port Forwarding.

For further flexibility, you can configure VLANs (IEEE 802.1q) and network bonding, also known as "link
aggregation". That way it is possible to build complex and flexible virtual networks.

Bridges are like physical network switches implemented in software.
All virtual guests can share a single bridge, or you can create multiple
bridges to separate network domains. Each host can have up to 4094
bridges.

The installation program creates a single bridge named vmbr0, which
is connected to the first Ethernet card. The corresponding configuration
in /etc/network/interfaces might look like this:

auto lo

iface lo inet loopback

iface eno1 inet manual

auto vmbr0

iface vmbr0 inet static

 address 192.168.10.2/24

 gateway 192.168.10.1

 bridge-ports eno1

 bridge-stp off

 bridge-fd 0

Virtual machines behave as if they were directly connected to the physical network. The network, in turn, sees
each virtual machine as having its own MAC, even though there is only one network cable connecting all of
these VMs to the network.

Most hosting providers do not support the above setup. For security reasons, they disable networking as soon as
they detect multiple MAC addresses on a single interface.

Some providers allow you to register additional MACs through their management interface.
This avoids the problem, but can be clumsy to configure because you need to register a MAC
for each of your VMs.

You can avoid the problem by “routing” all traffic via a single interface. This makes sure that all network
packets use the same MAC address.

A common scenario is that you have a public IP (assume 198.51.100.5 for this example), and an additional
IP block for your VMs (203.0.113.16/28). We recommend the following setup for such situations:

Proxmox VE server at hosting provider, with a single public IP address

Default Configuration using a Bridge

Routed Configuration

Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 5/11

https://pve.proxmox.com/pve-docs/images/default-network-setup-bridge.svg
https://www.proxmox.com/en/privacy-policy

Node: proxmox

Provider Gateway
198.51.100.1

eno0

198.51.100.5/29

vmbr0
203.0.113.17/28

tap100i0

ip_forward = 1
proxy_arp = 1

ens18

VM 100
203.0.113.18

ens18

VM 101
203.0.113.19

ens18

VM 102
203.0.113.20

auto lo

iface lo inet loopback

auto eno0

iface eno0 inet static

 address 198.51.100.5/29

 gateway 198.51.100.1

 post-up echo 1 > /proc/sys/net/ipv4/ip_forward

 post-up echo 1 > /proc/sys/net/ipv4/conf/eno0/proxy_arp

auto vmbr0

iface vmbr0 inet static

 address 203.0.113.17/28

 bridge-ports none

 bridge-stp off

 bridge-fd 0

Masquerading allows guests having only a private IP address to access the network by using the host IP address
for outgoing traffic. Each outgoing packet is rewritten by iptables to appear as originating from the host, and
responses are rewritten accordingly to be routed to the original sender.

auto lo

iface lo inet loopback

auto eno1

#real IP address

iface eno1 inet static

 address 198.51.100.5/24

 gateway 198.51.100.1

auto vmbr0

#private sub network

iface vmbr0 inet static

 address 10.10.10.1/24

 bridge-ports none

 bridge-stp off

 bridge-fd 0

 post-up echo 1 > /proc/sys/net/ipv4/ip_forward

 post-up iptables -t nat -A POSTROUTING -s '10.10.10.0/24' -o eno1 -j MASQUERADE

 post-down iptables -t nat -D POSTROUTING -s '10.10.10.0/24' -o eno1 -j MASQUERADE

In some masquerade setups with firewall enabled, conntrack zones might be needed for
outgoing connections. Otherwise the firewall could block outgoing connections since they will
prefer the POSTROUTING of the VM bridge (and not MASQUERADE).

Adding these lines in the /etc/network/interfaces can fix this problem:

post-up iptables -t raw -I PREROUTING -i fwbr+ -j CT --zone 1

post-down iptables -t raw -D PREROUTING -i fwbr+ -j CT --zone 1

For more information about this, refer to the following links:

Netfilter Packet Flow

Patch on netdev-list introducing conntrack zones

Masquerading (NAT) with iptables

Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 6/11

https://pve.proxmox.com/pve-docs/images/default-network-setup-routed.svg
https://commons.wikimedia.org/wiki/File:Netfilter-packet-flow.svg
https://lwn.net/Articles/370152/
https://www.proxmox.com/en/privacy-policy

Blog post with a good explanation by using TRACE in the raw table

Bonding (also called NIC teaming or Link Aggregation) is a technique for binding multiple NIC’s to a single
network device. It is possible to achieve different goals, like make the network fault-tolerant, increase the
performance or both together.

High-speed hardware like Fibre Channel and the associated switching hardware can be quite expensive. By
doing link aggregation, two NICs can appear as one logical interface, resulting in double speed. This is a native
Linux kernel feature that is supported by most switches. If your nodes have multiple Ethernet ports, you can
distribute your points of failure by running network cables to different switches and the bonded connection will
failover to one cable or the other in case of network trouble.

Aggregated links can improve live-migration delays and improve the speed of replication of data between
Proxmox VE Cluster nodes.

There are 7 modes for bonding:

Round-robin (balance-rr): Transmit network packets in sequential order from the first available
network interface (NIC) slave through the last. This mode provides load balancing and fault
tolerance.

Active-backup (active-backup): Only one NIC slave in the bond is active. A different slave
becomes active if, and only if, the active slave fails. The single logical bonded interface’s MAC
address is externally visible on only one NIC (port) to avoid distortion in the network switch. This
mode provides fault tolerance.

XOR (balance-xor): Transmit network packets based on [(source MAC address XOR’d with
destination MAC address) modulo NIC slave count]. This selects the same NIC slave for each
destination MAC address. This mode provides load balancing and fault tolerance.

Broadcast (broadcast): Transmit network packets on all slave network interfaces. This mode
provides fault tolerance.

IEEE 802.3ad Dynamic link aggregation (802.3ad)(LACP): Creates aggregation groups that
share the same speed and duplex settings. Utilizes all slave network interfaces in the active
aggregator group according to the 802.3ad specification.

Adaptive transmit load balancing (balance-tlb): Linux bonding driver mode that does not
require any special network-switch support. The outgoing network packet traffic is distributed
according to the current load (computed relative to the speed) on each network interface slave.
Incoming traffic is received by one currently designated slave network interface. If this receiving
slave fails, another slave takes over the MAC address of the failed receiving slave.

Linux Bond

Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 7/11

https://web.archive.org/web/20220610151210/https://blog.lobraun.de/2019/05/19/prox/
https://www.proxmox.com/en/privacy-policy

Node: proxmox1 Node: proxmox2

Top of Rack Switch 1
1 2

Top of Rack Switch 2
1 2

MLAG

eno1 eno2

bond0
LACP

eno1 eno2

bond0
LACP

bond0

vmbr0
10.10.10.2/24

tap100i0

bond0

vmbr0
10.10.10.3/24

tap100i0

ens18

VM 100
10.10.10.100

ens18

VM 200
10.10.10.200

Adaptive load balancing (balance-alb): Includes balance-tlb plus receive load balancing (rlb) for
IPV4 traffic, and does not require any special network switch support. The receive load balancing
is achieved by ARP negotiation. The bonding driver intercepts the ARP Replies sent by the local
system on their way out and overwrites the source hardware address with the unique hardware
address of one of the NIC slaves in the single logical bonded interface such that different network-
peers use different MAC addresses for their network packet traffic.

If your switch support the LACP (IEEE 802.3ad) protocol then we recommend using the corresponding bonding
mode (802.3ad). Otherwise you should generally use the active-backup mode.

For the cluster network (Corosync) we recommend configuring it with multiple networks. Corosync does not
need a bond for network reduncancy as it can switch between networks by itself, if one becomes unusable.

The following bond configuration can be used as distributed/shared storage network. The benefit would be that
you get more speed and the network will be fault-tolerant.

Example: Use bond with fixed IP address

auto lo

iface lo inet loopback

iface eno1 inet manual

iface eno2 inet manual

iface eno3 inet manual

auto bond0

iface bond0 inet static

 bond-slaves eno1 eno2

 address 192.168.1.2/24

 bond-miimon 100

 bond-mode 802.3ad

 bond-xmit-hash-policy layer2+3

auto vmbr0

iface vmbr0 inet static

 address 10.10.10.2/24

 gateway 10.10.10.1

 bridge-ports eno3

 bridge-stp off

 bridge-fd 0

Another possibility it to use the bond directly as bridge port. This can
be used to make the guest network fault-tolerant.

Example: Use a bond as bridge port

auto lo

iface lo inet loopback

iface eno1 inet manual

iface eno2 inet manual

auto bond0

iface bond0 inet manual

 bond-slaves eno1 eno2

 bond-miimon 100

 bond-mode 802.3ad

 bond-xmit-hash-policy layer2+3

auto vmbr0

Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 8/11

https://pve.proxmox.com/pve-docs/images/default-network-setup-bond.svg
https://www.proxmox.com/en/privacy-policy

iface vmbr0 inet static

 address 10.10.10.2/24

 gateway 10.10.10.1

 bridge-ports bond0

 bridge-stp off

 bridge-fd 0

A virtual LAN (VLAN) is a broadcast domain that is partitioned and isolated in the network at layer two. So it is
possible to have multiple networks (4096) in a physical network, each independent of the other ones.

Each VLAN network is identified by a number often called tag. Network packages are then tagged to identify
which virtual network they belong to.

Proxmox VE supports this setup out of the box. You can specify the VLAN tag when you create a VM. The
VLAN tag is part of the guest network configuration. The networking layer supports different modes to
implement VLANs, depending on the bridge configuration:

VLAN awareness on the Linux bridge: In this case, each guest’s virtual network card is
assigned to a VLAN tag, which is transparently supported by the Linux bridge. Trunk mode is also
possible, but that makes configuration in the guest necessary.

"traditional" VLAN on the Linux bridge: In contrast to the VLAN awareness method, this
method is not transparent and creates a VLAN device with associated bridge for each VLAN. That
is, creating a guest on VLAN 5 for example, would create two interfaces eno1.5 and vmbr0v5,
which would remain until a reboot occurs.

Open vSwitch VLAN: This mode uses the OVS VLAN feature.

Guest configured VLAN: VLANs are assigned inside the guest. In this case, the setup is
completely done inside the guest and can not be influenced from the outside. The benefit is that
you can use more than one VLAN on a single virtual NIC.

To allow host communication with an isolated network. It is possible to apply VLAN tags to any network device
(NIC, Bond, Bridge). In general, you should configure the VLAN on the interface with the least abstraction
layers between itself and the physical NIC.

For example, in a default configuration where you want to place the host management address on a separate
VLAN.

Example: Use VLAN 5 for the Proxmox VE management IP with traditional Linux bridge

VLAN 802.1Q

VLAN for Guest Networks

VLAN on the Host

Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 9/11

https://www.proxmox.com/en/privacy-policy

auto lo

iface lo inet loopback

iface eno1 inet manual

iface eno1.5 inet manual

auto vmbr0v5

iface vmbr0v5 inet static

 address 10.10.10.2/24

 gateway 10.10.10.1

 bridge-ports eno1.5

 bridge-stp off

 bridge-fd 0

auto vmbr0

iface vmbr0 inet manual

 bridge-ports eno1

 bridge-stp off

 bridge-fd 0

Example: Use VLAN 5 for the Proxmox VE management IP with VLAN aware Linux bridge

auto lo

iface lo inet loopback

iface eno1 inet manual

auto vmbr0.5

iface vmbr0.5 inet static

 address 10.10.10.2/24

 gateway 10.10.10.1

auto vmbr0

iface vmbr0 inet manual

 bridge-ports eno1

 bridge-stp off

 bridge-fd 0

 bridge-vlan-aware yes

 bridge-vids 2-4094

The next example is the same setup but a bond is used to make this network fail-safe.

Example: Use VLAN 5 with bond0 for the Proxmox VE management IP with traditional Linux bridge

auto lo

iface lo inet loopback

iface eno1 inet manual

iface eno2 inet manual

auto bond0

iface bond0 inet manual

 bond-slaves eno1 eno2

 bond-miimon 100

 bond-mode 802.3ad

 bond-xmit-hash-policy layer2+3

iface bond0.5 inet manual

auto vmbr0v5

iface vmbr0v5 inet static

 address 10.10.10.2/24

 gateway 10.10.10.1

 bridge-ports bond0.5

 bridge-stp off

 bridge-fd 0Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 10/11

https://www.proxmox.com/en/privacy-policy

auto vmbr0

iface vmbr0 inet manual

 bridge-ports bond0

 bridge-stp off

 bridge-fd 0

Proxmox VE works correctly in all environments, irrespective of whether IPv6 is deployed or not. We
recommend leaving all settings at the provided defaults.

Should you still need to disable support for IPv6 on your node, do so by creating an appropriate
sysctl.conf (5) snippet file and setting the proper sysctls, for example adding
/etc/sysctl.d/disable-ipv6.conf with content:

net.ipv6.conf.all.disable_ipv6 = 1

net.ipv6.conf.default.disable_ipv6 = 1

This method is preferred to disabling the loading of the IPv6 module on the kernel commandline.

By default, MAC learning is enabled on a bridge to ensure a smooth experience with virtual guests and their
networks.

But in some environments this can be undesired. Since Proxmox VE 7.3 you can disable MAC learning on the
bridge by setting the ‘bridge-disable-mac-learning 1` configuration on a bridge in `/etc/network/interfaces’, for
example:

...

auto vmbr0

iface vmbr0 inet static

 address 10.10.10.2/24

 gateway 10.10.10.1

 bridge-ports ens18

 bridge-stp off

 bridge-fd 0

 bridge-disable-mac-learning 1

Once enabled, Proxmox VE will manually add the configured MAC address from VMs and Containers to the
bridges forwarding database to ensure that guest can still use the network - but only when they are using their
actual MAC address.

Retrieved from "https://pve.proxmox.com/mediawiki/index.php?title=Network_Configuration&oldid=11844"

This page was last edited on 23 November 2023, at 14:11.

Disabling IPv6 on the Node

Disabling MAC Learning on a Bridge

Cookies help us deliver our services. By using our services, you agree to our use of
cookies.

More information

9/18/24, 7:27 AM Network Configuration - Proxmox VE

https://pve.proxmox.com/wiki/Network_Configuration 11/11

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ipv6.rst
https://pve.proxmox.com/mediawiki/index.php?title=Network_Configuration&oldid=11844
https://www.proxmox.com/en/privacy-policy

