
pip install

Usage

Description
Install packages from:

PyPI (and other indexes) using requirement specifiers.

VCS project urls.

Local project directories.

Local or remote source archives.

pip also supports installing from “requirements files”, which provide an easy way to specify a whole
environment to be installed.

Overview
pip install has several stages:

1. Identify the base requirements. The user supplied arguments are processed here.

2. Resolve dependencies. What will be installed is determined here.

3. Build wheels. All the dependencies that can be are built into wheels.

4. Install the packages (and uninstall anything being upgraded/replaced).

Note that pip install prefers to leave the installed version as-is unless --upgrade is specified.

python -m pip install [options] <requirement specifier> [package-index-options] ...

python -m pip install [options] -r <requirements file> [package-index-options] ...

python -m pip install [options] [-e] <vcs project url> ...

python -m pip install [options] [-e] <local project path> ...

python -m pip install [options] <archive url/path> ...

Unix/macOS Windows

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 1/14

Argument Handling
When looking at the items to be installed, pip checks what type of item each is, in the following
order:

1. Project or archive URL.

2. Local directory (which must contain a pyproject.toml or setup.py , otherwise pip will report an
error).

3. Local file (a sdist or wheel format archive, following the naming conventions for those formats).

4. A version specifier.

Each item identified is added to the set of requirements to be satisfied by the install.

Working Out the Name and Version
For each candidate item, pip needs to know the project name and version. For wheels (identified by
the .whl file extension) this can be obtained from the filename, as per the Wheel spec. For local
directories, or explicitly specified sdist files, the setup.py egg_info command is used to determine
the project metadata. For sdists located via an index, the filename is parsed for the name and
project version (this is in theory slightly less reliable than using the egg_info command, but avoids
downloading and processing unnecessary numbers of files).

Any URL may use the #egg=name syntax (see VCS Support) to explicitly state the project name.

Satisfying Requirements
Once pip has the set of requirements to satisfy, it chooses which version of each requirement to
install using the simple rule that the latest version that satisfies the given constraints will be installed
(but see here for an exception regarding pre-release versions). Where more than one source of the
chosen version is available, it is assumed that any source is acceptable (as otherwise the versions
would differ).

Obtaining information about what was installed
The install command has a --report option that will generate a JSON report of what pip has
installed. In combination with the --dry-run and --ignore-installed it can be used to resolve a
set of requirements without actually installing them.

The report can be written to a file, or to standard output (using --report - in combination with --
quiet).

The format of the JSON report is described in Installation Report.

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 2/14

https://packaging.python.org/en/latest/specifications/version-specifiers/#version-specifiers
https://pip.pypa.io/en/latest/topics/vcs-support/
https://pip.pypa.io/en/latest/reference/installation-report/

Installation Order

This section is only about installation order of runtime dependencies, and does not apply to build dependencies (those
are specified using the [build-system] table).

As of v6.1.0, pip installs dependencies before their dependents, i.e. in “topological order.” This is the
only commitment pip currently makes related to order. While it may be coincidentally true that pip
will install things in the order of the install arguments or in the order of the items in a requirements
file, this is not a promise.

In the event of a dependency cycle (aka “circular dependency”), the current implementation (which
might possibly change later) has it such that the first encountered member of the cycle is installed
last.

For instance, if quux depends on foo which depends on bar which depends on baz, which depends
on foo:

Prior to v6.1.0, pip made no commitments about install order.

The decision to install topologically is based on the principle that installations should proceed in a
way that leaves the environment usable at each step. This has two main practical benefits:

1. Concurrent use of the environment during the install is more likely to work.

2. A failed install is less likely to leave a broken environment. Although pip would like to support
failure rollbacks eventually, in the mean time, this is an improvement.

Note

$ python -m pip install quux

...

Installing collected packages baz, bar, foo, quux

$ python -m pip install bar

...

Installing collected packages foo, baz, bar

Unix/macOS Windows

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 3/14

https://packaging.python.org/en/latest/specifications/pyproject-toml/#pyproject-build-system-table

Although the new install order is not intended to replace (and does not replace) the use of

setup_requires to declare build dependencies, it may help certain projects install from sdist (that
might previously fail) that fit the following profile:

1. They have build dependencies that are also declared as install dependencies using

install_requires .

2. python setup.py egg_info works without their build dependencies being installed.

3. For whatever reason, they don’t or won’t declare their build dependencies using setup_requires .

Requirements File Format

This section has been moved to Requirements File Format.

Requirement Specifiers

This section has been moved to Requirement Specifiers.

Per-requirement Overrides

This is now covered in Requirements File Format.

Pre-release Versions
Starting with v1.4, pip will only install stable versions as specified by pre-releases by default. If a
version cannot be parsed as a compliant version then it is assumed to be a pre-release.

If a Requirement specifier includes a pre-release or development version (e.g. >=0.0.dev0) then pip
will allow pre-release and development versions for that requirement. This does not include the !=
flag.

The pip install command also supports a --pre flag that enables installation of pre-releases and
development releases.

VCS Support

This is now covered in VCS Support.

Finding Packages
pip searches for packages on PyPI using the HTTP simple interface, which is documented here and
there.

pip offers a number of package index options for modifying how packages are found.

pip looks for packages in a number of places: on PyPI (or the index given as --index-url , if not
disabled via --no-index), in the local filesystem, and in any additional repositories specified via --
find-links or --extra-index-url . There is no priority in the locations that are searched. Rather
they are all checked, and the “best” match for the requirements (in terms of version number - see
the specification for details) is selected.

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 4/14

https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://pip.pypa.io/en/latest/reference/requirement-specifiers/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://www.python.org/dev/peps/pep-0440/#handling-of-pre-releases
https://packaging.python.org/en/latest/specifications/version-specifiers/#version-specifiers
https://pip.pypa.io/en/latest/topics/vcs-support/
https://pypi.org/
https://pypi.org/simple/
https://packaging.python.org/specifications/simple-repository-api/
https://www.python.org/dev/peps/pep-0503/
https://packaging.python.org/en/latest/specifications/version-specifiers/#version-specifiers

See the pip install Examples.

SSL Certificate Verification

This is now covered in HTTPS Certificates.

Caching

This is now covered in Caching.

Wheel Cache

This is now covered in Caching.

Hash checking mode

This is now covered in Secure installs.

Local Project Installs

This is now covered in Local project installs.

Editable installs

This is now covered in Local project installs.

Build System Interface

This is now covered in Build System Interface.

Options
-r, --requirement <file>

Install from the given requirements file. This option can be used multiple times.

(environment variable: PIP_REQUIREMENT)

-c, --constraint <file>

Constrain versions using the given constraints file. This option can be used multiple times.

(environment variable: PIP_CONSTRAINT)

--no-deps

Don’t install package dependencies.

(environment variable: PIP_NO_DEPS , PIP_NO_DEPENDENCIES)
Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 5/14

https://pip.pypa.io/en/latest/topics/https-certificates/
https://pip.pypa.io/en/latest/topics/caching/
https://pip.pypa.io/en/latest/topics/caching/
https://pip.pypa.io/en/latest/topics/secure-installs/
https://pip.pypa.io/en/latest/topics/local-project-installs/
https://pip.pypa.io/en/latest/topics/local-project-installs/
https://pip.pypa.io/en/latest/reference/build-system/

--pre

Include pre-release and development versions. By default, pip only finds stable versions.

(environment variable: PIP_PRE)

-e, --editable <path/url>

Install a project in editable mode (i.e. setuptools “develop mode”) from a local project path or a
VCS url.

(environment variable: PIP_EDITABLE)

--dry-run

Don’t actually install anything, just print what would be. Can be used in combination with --
ignore-installed to ‘resolve’ the requirements.

(environment variable: PIP_DRY_RUN)

-t, --target <dir>

Install packages into <dir>. By default this will not replace existing files/folders in <dir>. Use --
upgrade to replace existing packages in <dir> with new versions.

(environment variable: PIP_TARGET)

--platform <platform>

Only use wheels compatible with <platform>. Defaults to the platform of the running system.
Use this option multiple times to specify multiple platforms supported by the target interpreter.

(environment variable: PIP_PLATFORM)

--python-version <python_version>

The Python interpreter version to use for wheel and “Requires-Python” compatibility checks.
Defaults to a version derived from the running interpreter. The version can be specified using up
to three dot-separated integers (e.g. “3” for 3.0.0, “3.7” for 3.7.0, or “3.7.3”). A major-minor
version can also be given as a string without dots (e.g. “37” for 3.7.0).

(environment variable: PIP_PYTHON_VERSION)

--implementation <implementation>

Only use wheels compatible with Python implementation <implementation>, e.g. ‘pp’, ‘jy’, ‘cp’,
or ‘ip’. If not specified, then the current interpreter implementation is used. Use ‘py’ to force
implementation-agnostic wheels.

(environment variable: PIP_IMPLEMENTATION)

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 6/14

--abi <abi>

Only use wheels compatible with Python abi <abi>, e.g. ‘pypy_41’. If not specified, then the
current interpreter abi tag is used. Use this option multiple times to specify multiple abis
supported by the target interpreter. Generally you will need to specify --implementation, --
platform, and --python-version when using this option.

(environment variable: PIP_ABI)

--user

Install to the Python user install directory for your platform. Typically ~/.local/, or
%APPDATA%Python on Windows. (See the Python documentation for site.USER_BASE for full
details.)

(environment variable: PIP_USER)

--root <dir>

Install everything relative to this alternate root directory.

(environment variable: PIP_ROOT)

--prefix <dir>

Installation prefix where lib, bin and other top-level folders are placed. Note that the resulting
installation may contain scripts and other resources which reference the Python interpreter of
pip, and not that of --prefix . See also the --python option if the intention is to install
packages into another (possibly pip-free) environment.

(environment variable: PIP_PREFIX)

--src <dir>

Directory to check out editable projects into. The default in a virtualenv is “<venv path>/src”.
The default for global installs is “<current dir>/src”.

(environment variable: PIP_SRC , PIP_SOURCE , PIP_SOURCE_DIR , PIP_SOURCE_DIRECTORY)

-U, --upgrade

Upgrade all specified packages to the newest available version. The handling of dependencies
depends on the upgrade-strategy used.

(environment variable: PIP_UPGRADE)

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 7/14

--upgrade-strategy <upgrade_strategy>

Determines how dependency upgrading should be handled [default: only-if-needed]. “eager” -
dependencies are upgraded regardless of whether the currently installed version satisfies the
requirements of the upgraded package(s). “only-if-needed” - are upgraded only when they do
not satisfy the requirements of the upgraded package(s).

(environment variable: PIP_UPGRADE_STRATEGY)

--force-reinstall

Reinstall all packages even if they are already up-to-date.

(environment variable: PIP_FORCE_REINSTALL)

-I, --ignore-installed

Ignore the installed packages, overwriting them. This can break your system if the existing
package is of a different version or was installed with a different package manager!

(environment variable: PIP_IGNORE_INSTALLED)

--ignore-requires-python

Ignore the Requires-Python information.

(environment variable: PIP_IGNORE_REQUIRES_PYTHON)

--no-build-isolation

Disable isolation when building a modern source distribution. Build dependencies specified by
PEP 518 must be already installed if this option is used.

(environment variable: PIP_NO_BUILD_ISOLATION)

--use-pep517

Use PEP 517 for building source distributions (use --no-use-pep517 to force legacy behaviour).

(environment variable: PIP_USE_PEP517)

--check-build-dependencies

Check the build dependencies when PEP517 is used.

(environment variable: PIP_CHECK_BUILD_DEPENDENCIES)

--break-system-packages

Allow pip to modify an EXTERNALLY-MANAGED Python installation

(environment variable: PIP_BREAK_SYSTEM_PACKAGES)

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 8/14

-C, --config-settings <settings>

Configuration settings to be passed to the PEP 517 build backend. Settings take the form
KEY=VALUE. Use multiple --config-settings options to pass multiple keys to the backend.

(environment variable: PIP_CONFIG_SETTINGS)

--global-option <options>

Extra global options to be supplied to the setup.py call before the install or bdist_wheel
command.

(environment variable: PIP_GLOBAL_OPTION)

--compile

Compile Python source files to bytecode

(environment variable: PIP_COMPILE)

--no-compile

Do not compile Python source files to bytecode

(environment variable: PIP_NO_COMPILE)

--no-warn-script-location

Do not warn when installing scripts outside PATH

(environment variable: PIP_NO_WARN_SCRIPT_LOCATION)

--no-warn-conflicts

Do not warn about broken dependencies

(environment variable: PIP_NO_WARN_CONFLICTS)

--no-binary <format_control>

Do not use binary packages. Can be supplied multiple times, and each time adds to the existing
value. Accepts either “:all:” to disable all binary packages, “:none:” to empty the set (notice the
colons), or one or more package names with commas between them (no colons). Note that
some packages are tricky to compile and may fail to install when this option is used on them.

(environment variable: PIP_NO_BINARY)

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 9/14

--only-binary <format_control>

Do not use source packages. Can be supplied multiple times, and each time adds to the
existing value. Accepts either “:all:” to disable all source packages, “:none:” to empty the set, or
one or more package names with commas between them. Packages without binary
distributions will fail to install when this option is used on them.

(environment variable: PIP_ONLY_BINARY)

--prefer-binary

Prefer binary packages over source packages, even if the source packages are newer.

(environment variable: PIP_PREFER_BINARY)

--require-hashes

Require a hash to check each requirement against, for repeatable installs. This option is implied
when any package in a requirements file has a --hash option.

(environment variable: PIP_REQUIRE_HASHES)

--progress-bar <progress_bar>

Specify whether the progress bar should be used [on, off, raw] (default: on)

(environment variable: PIP_PROGRESS_BAR)

--root-user-action <root_user_action>

Action if pip is run as a root user [warn, ignore] (default: warn)

(environment variable: PIP_ROOT_USER_ACTION)

--report <file>

Generate a JSON file describing what pip did to install the provided requirements. Can be used
in combination with --dry-run and --ignore-installed to ‘resolve’ the requirements. When - is used
as file name it writes to stdout. When writing to stdout, please combine with the --quiet option to
avoid mixing pip logging output with JSON output.

(environment variable: PIP_REPORT)

--no-clean

Don’t clean up build directories.

(environment variable: PIP_NO_CLEAN)
Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 10/14

-i, --index-url <url>

Base URL of the Python Package Index (default https://pypi.org/simple). This should point to a
repository compliant with PEP 503 (the simple repository API) or a local directory laid out in the
same format.

(environment variable: PIP_INDEX_URL , PIP_PYPI_URL)

--extra-index-url <url>

Extra URLs of package indexes to use in addition to --index-url. Should follow the same rules
as --index-url.

(environment variable: PIP_EXTRA_INDEX_URL)

--no-index

Ignore package index (only looking at --find-links URLs instead).

(environment variable: PIP_NO_INDEX)

-f, --find-links <url>

If a URL or path to an html file, then parse for links to archives such as sdist (.tar.gz) or wheel
(.whl) files. If a local path or file:// URL that’s a directory, then look for archives in the directory
listing. Links to VCS project URLs are not supported.

(environment variable: PIP_FIND_LINKS)

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 11/14

https://pypi.org/simple
file:///

Examples
1. Install SomePackage and its dependencies from PyPI using Requirement Specifiers

2. Install a list of requirements specified in a file. See the Requirements files.

3. Upgrade an already installed SomePackage to the latest from PyPI.

4. Install a local project in “editable” mode. See the section on Editable Installs.

5. Install a project from VCS

6. Install a project from VCS in “editable” mode. See the sections on VCS Support and Editable
Installs.

python -m pip install SomePackage # latest version

python -m pip install 'SomePackage==1.0.4' # specific version

python -m pip install 'SomePackage>=1.0.4' # minimum version

python -m pip install -r requirements.txt

python -m pip install --upgrade SomePackage

python -m pip install -e . # project in current directory

python -m pip install -e path/to/project # project in another directory

python -m pip install 'SomeProject@git+https://git.repo/some_pkg.git@1.3.1'

Unix/macOS Windows

Unix/macOS Windows

Unix/macOS Windows

Unix/macOS Windows

Unix/macOS Windows

Unix/macOS Windows

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 12/14

https://pypi.org/
https://pip.pypa.io/en/latest/reference/requirement-specifiers/#requirement-specifiers
https://pip.pypa.io/en/latest/user_guide/#requirements-files
https://pip.pypa.io/en/latest/topics/local-project-installs/#editable-installs
https://pip.pypa.io/en/latest/topics/vcs-support/
https://pip.pypa.io/en/latest/topics/local-project-installs/#editable-installs
https://pip.pypa.io/en/latest/topics/local-project-installs/#editable-installs

7. Install a package with extras, i.e., optional dependencies (specification).

8. Install a particular source archive file.

9. Install a particular source archive file following direct references (specification).

10. Install from alternative package repositories.

Install from a different index, and not PyPI

Install from a local flat directory containing archives (and don’t scan indexes):

python -m pip install -e 'git+https://git.repo/some_pkg.git#egg=SomePackage' #

python -m pip install -e 'hg+https://hg.repo/some_pkg.git#egg=SomePackage' #

python -m pip install -e 'svn+svn://svn.repo/some_pkg/trunk/#egg=SomePackage' #

python -m pip install -e 'git+https://git.repo/some_pkg.git@feature#egg=SomePackage' #

python -m pip install -e 'git+https://git.repo/some_repo.git#egg=subdir&subdirectory=su

python -m pip install 'SomePackage[PDF]'

python -m pip install 'SomePackage[PDF] @ git+https://git.repo/SomePackage@main#subdire

python -m pip install '.[PDF]' # project in current directory

python -m pip install 'SomePackage[PDF]==3.0'

python -m pip install 'SomePackage[PDF,EPUB]' # multiple extras

python -m pip install './downloads/SomePackage-1.0.4.tar.gz'

python -m pip install 'http://my.package.repo/SomePackage-1.0.4.zip'

python -m pip install 'SomeProject@http://my.package.repo/SomeProject-1.2.3-py33-none-a

python -m pip install 'SomeProject @ http://my.package.repo/SomeProject-1.2.3-py33-none

python -m pip install 'SomeProject@http://my.package.repo/1.2.3.tar.gz'

python -m pip install --index-url http://my.package.repo/simple/ SomePackage

python -m pip install --no-index --find-links=file:///local/dir/ SomePackage

python -m pip install --no-index --find-links=/local/dir/ SomePackage

python -m pip install --no-index --find-links=relative/dir/ SomePackage

Unix/macOS Windows

Unix/macOS Windows

Unix/macOS Windows

Unix/macOS Windows

Unix/macOS Windows

Skip to content

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 13/14

https://packaging.python.org/en/latest/specifications/dependency-specifiers/#dependency-specifiers
https://packaging.python.org/en/latest/specifications/dependency-specifiers/#dependency-specifiers
https://pypi.org/

Search an additional index during install, in addition to PyPI

Using this option to search for packages which are not in the main repository (such as private packages) is unsafe,
per a security vulnerability called dependency confusion: an attacker can claim the package on the public repository

in a way that will ensure it gets chosen over the private package.

11. Find pre-release and development versions, in addition to stable versions. By default, pip only
finds stable versions.

12. Install packages from source.

Do not use any binary packages

Specify SomePackage1 to be installed from source:

Copyright © The pip developers

Made with Sphinx and @pradyunsg's Furo

Warning

python -m pip install --extra-index-url http://my.package.repo/simple SomePackage

python -m pip install --pre SomePackage

python -m pip install SomePackage1 SomePackage2 --no-binary :all:

python -m pip install SomePackage1 SomePackage2 --no-binary SomePackage1

Unix/macOS Windows

Unix/macOS Windows

Unix/macOS Windows

Unix/macOS Windows

9/3/24, 5:20 AM pip install - pip documentation v24.3.dev0

https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-t 14/14

https://pypi.org/
https://azure.microsoft.com/en-us/resources/3-ways-to-mitigate-risk-using-private-package-feeds/
https://pip.pypa.io/en/latest/copyright/
https://www.sphinx-doc.org/
https://pradyunsg.me/
https://github.com/pradyunsg/furo
https://readthedocs.org/projects/pip
https://github.com/pypa/pip

